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Summary
Background Despite a substantial reduction in the use of solid fuels for cooking worldwide, exposure to household air 
pollution (HAP) remains a leading global risk factor, contributing considerably to the burden of disease. We present 
a comprehensive analysis of spatial patterns and temporal trends in exposure and attributable disease from 1990 
to 2021, featuring substantial methodological updates compared with previous iterations of the Global Burden of 
Diseases, Injuries, and Risk Factors Study, including improved exposure estimations accounting for specific fuel 
types.

Methods We estimated HAP exposure and trends and attributable burden for cataract, chronic obstructive pulmonary 
disease, ischaemic heart disease, lower respiratory infections, tracheal cancer, bronchus cancer, lung cancer, stroke, 
type 2 diabetes, and causes mediated via adverse reproductive outcomes for 204 countries and territories from 1990 
to 2021. We first estimated the mean fuel type-specific concentrations (in µg/m³) of fine particulate matter (PM2·5) 
pollution to which individuals using solid fuels for cooking were exposed, categorised by fuel type, location, year, age, 
and sex. Using a systematic review of the epidemiological literature and a newly developed meta-regression tool 
(meta-regression: Bayesian, regularised, trimmed), we derived disease-specific, non-parametric exposure–response 
curves to estimate relative risk as a function of PM2·5 concentration. We combined our exposure estimates and relative 
risks to estimate population attributable fractions and attributable burden for each cause by sex, age, location, and 
year.

Findings In 2021, 2·67 billion (95% uncertainty interval [UI] 2·63–2·71) people, 33·8% (95% UI 33·2–34·3) of the 
global population, were exposed to HAP from all sources at a mean concentration of 84·2 µg/m³. Although these 
figures show a notable reduction in the percentage of the global population exposed in 1990 (56·7%, 56·4–57·1), in 
absolute terms, there has been only a decline of 0·35 billion (10%) from the 3·02 billion people exposed to HAP 
in 1990. In 2021, 111 million (95% UI 75·1–164) global disability-adjusted life-years (DALYs) were attributable to HAP, 
accounting for 3·9% (95% UI 2·6–5·7) of all DALYs. The rate of global, HAP-attributable DALYs in 2021 was 1500·3 
(95% UI 1028·4–2195·6) age-standardised DALYs per 100 000 population, a decline of 63·8% since 1990, when 
HAP-attributable DALYs comprised 4147·7 (3101·4–5104·6) age-standardised DALYs per 100 000 population. HAP-
attributable burden remained highest in sub-Saharan Africa and south Asia, with 4044·1 (3103·4–5219·7) and 3213·5 
(2165·4–4409·4) age-standardised DALYs per 100 000 population, respectively. The rate of HAP-attributable DALYs  
was higher for males (1530·5, 1023·4–2263·6) than for females (1318·5, 866·1–1977·2). Approximately one-third of 
the HAP-attributable burden (518·1, 410·1–641·7) was mediated via short gestation and low birthweight. 
Decomposition of trends and drivers behind changes in the HAP-attributable burden highlighted that declines in 
exposures were counteracted by population growth in most regions of the world, especially sub-Saharan Africa.

Interpretation Although the burden attributable to HAP has decreased considerably, HAP remains a substantial risk 
factor, especially in sub-Saharan Africa and south Asia. Our comprehensive estimates of HAP exposure and 
attributable burden offer a robust and reliable resource for health policy makers and practitioners to precisely target 
and tailor health interventions. Given the persistent and substantial impact of HAP in many regions and countries, it 
is imperative to accelerate efforts to transition under-resourced communities to cleaner household energy sources. 
Such initiatives are crucial for mitigating health risks and promoting sustainable development, ultimately improving 
the quality of life and health outcomes for millions of people.
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Introduction
Household air pollution (HAP) from solid cooking fuels 
is a known source of health-relevant exposure for about 

3 billion people worldwide.1–3 People living in households 
using primarily solid fuels (coal or charcoal, wood, crop 
residues, and dung) for cooking are exposed to high 
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levels of HAP from particulate matter with a diameter of 
less than 2·5 µm (PM2·5), a well-established hazard to 
human health.4 Burns are common in households using 
solid fuels, and fuel collection typically falls to women 
and girls, consuming tens of hours per week.5 
UN Sustainable Development Goal (SDG) 3·9 aims to 
reduce morbidity and mortality from environmental 
pollution, and SDG 7·1 calls for universal access to 
cleaner fuels by 2030, but many countries still do not 
have the resources to achieve these goals.6

Previous studies, including the Global Burden of 
Diseases, Injuries, and Risk Factors Study, have estimated 
the HAP-attributable burden of disease, but limitations 
relating to methods and data remain. Past exposure 
estimates either did not account for spatiotemporal 
variability2,3 or did not adjust household exposure to the 
individual level.7 Previous estimates of burden relied on 
a binary exposure indicator2,4,8 and did not include type 2 
diabetes or causes mediated via adverse reproductive 
outcomes.8 Here, we provide an improved methodological 
framework developed over the past decade that more 
accurately characterises exposure and risk estimates. 
Although previous studies assumed that different solid 
fuel types produce the same amount of PM2·5 pollution,2,8 
a known simplification, in this study we modelled fuel 
type-specific exposure for four distinct categories—
ie, crop residues, dung, wood, and coal and 

charcoal—resulting in more precise PM2·5 exposure 
estimates.9 Moreover, we improved our exposure–
response estimates by incorporating newly published 
studies. Thus, the meta-regression in this study does not 
include active and passive smoking studies, which 
previously served as substitutes for high exposures.10 We 
also added type 2 diabetes and causes mediated via low 
birthweight and short gestation to our global analysis. 
This study is the first to detail the GBD methodology for 
estimating HAP-attributable burden since the 
assessment by Smith and colleagues3 of the approach 
used for GBD 2010, and we present numerous 
methodological and input data updates.

On the basis of these methodological improvements 
and updated data regarding exposure and relative risk, 
we estimated the burden of disease attributable to HAP 
for 204 countries and territories from 1990 to 2021. In 
addition to analysing spatial patterns, we conducted 
decomposition analysis to better understand the drivers 
behind changes in the attributable burden and to evaluate 
the role of demographic changes versus changes in 
exposure to HAP over this 31-year period.11,12 Our study 
adds to a growing body of work that shows the need for 
renewed action to reduce sustained burden from HAP. 
This manuscript was produced with input from the GBD 
Collaborator Network and in accordance with the 
GBD Protocol.

Research in context

Evidence before this study
Previous research on the global burden and mortality from 
household air pollution (HAP) used integrated exposure–
response curves that included few HAP studies and relied on 
passive and active smoking data or included pooled relative 
risks that assumed individuals to be either exposed or 
unexposed to HAP. Such estimations also assumed exposure to 
equal concentrations of particulate matter with a diameter of 
less than 2·5 μm (PM2·5), regardless of location and fuel type 
used.

Added value of this study 
This study extends previous efforts to estimate the burden 
attributable to HAP, with year-specific and location-specific 
exposures modelled by fuel type, focusing on coal, crop 
residues, dung, and wood. This innovative approach enabled 
a more precise estimation of exposure to PM2·5 and the 
associated burden of disease than previous studies, allowing us 
to provide comprehensive and timely estimates for 
204 locations from 1990 to 2021. Increased availability of 
epidemiological studies and a newly developed meta-
regression tool (meta-regression: Bayesian, regularised, 
trimmed) allowed us to expand the scope of health outcomes 
and discontinue the use of active and second-hand smoking 
data in our exposure–response estimations. Notably, we 
present the first global analysis to incorporate causes mediated 

via adverse reproductive outcomes—ie, short gestation and low 
birthweight. The indirect effect of HAP on reproductive health 
extends across the lifespan due to negative impacts on 
outcomes including diarrhoeal disease, respiratory disease, and 
other infectious and non-infectious diseases, substantially 
adding to the burden of disease. We also included cataract 
(estimated as a HAP-attributable cause for females since the 
Global Burden of Diseases, Injuries, and Risk Factors Study 
[GBD] 2010 and for males since GBD 2019) and diabetes (first 
included as a HAP-attributable cause in GBD 2017) in our 
estimations. 

Implications of all the available evidence
Despite substantial efforts to reduce exposure and decreases in 
the proportion of individuals cooking with solid fuels, exposure 
to and burden from HAP remain high. Our findings highlight 
higher exposure, morbidity, and mortality than previously 
estimated and show that although reductions in exposure have 
led to a net decrease in HAP burden over time, population 
growth has counteracted much of the effect of reduced 
exposure. We found that about a third of HAP-attributable 
burden is mediated through adverse reproductive outcomes, 
leading to tens of millions of years of life lost annually. Renewed 
efforts and international investments are required to transition 
exposed communities to cleaner fuels and reduce the 
consequent lifelong burden of household air pollution.
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Methods
Overview
GBD 2021 complies with the GATHER statement 
(appendix 1 p 12).11 Estimating the disease burden 
attributable to HAP required the following steps: global 
estimation of the number and proportion of people 
exposed to HAP by year, location, and fuel type; 
conversion of exposure proportions to fuel-type-specific 
PM2·5 concentrations by year, location, age, and sex; 
generation of exposure–response curves describing the 
relationships between PM2·5 concentration and relative 
risks (RRs) of incidence for specific diseases; and 
application of a theoretical minimum risk exposure 
level (TMREL)—ie, the level of risk exposure that 
minimises disease risk at the population level. These 
steps allowed for quantification of HAP-specific 
population attributable fractions that were then used to 
estimate HAP-attributable burden using GBD estimates 
for each year, age, sex, and location.

Proportion of population exposed to solid fuel types
In the first step, we used survey data to estimate the 
proportion of the population primarily using solid fuels 
in each location and year. For the purposes of this study, 
solid fuel was specified as coal and charcoal, wood, crop 
residues, and dung (appendix 1 pp 4–10). Estimations 
were based on data from household surveys 
(eg, Demographic and Health Surveys and Multiple 
Indicator Cluster Surveys), population censuses, WHO’s 
Household Energy Database,13 and other sources, such as 
country-specific surveys. For the code used in this 
analysis, see appendix 1 (p 4); for sources and estimates, 
see appendix 2 (p 6). Count data are presented to 
three significant figures and rates (percentages) to 
one decimal place.

We used the GBD 2021 spatiotemporal Gaussian 
process regression tool, a three-stage non-linear model 
that allowed us to produce a full set of estimates of the 
proportion of the population using each solid fuel type 
for all years and locations (appendix 1 pp 4–9). The first 
stage of the modelling process is a linear regression 
informed by both exposure data and covariates, the 
second stage smooths data variation across locations and 
time by analysing the residuals, and the third stage uses 
Gaussian process regression to produce the final model 
fit. After modelling each fuel type and the overall solid 
fuel exposure categories, we adjusted the sum of the fuel 
types to fit the solid fuel category for each location and 
year.

Mapping of exposure to PM2·5

In the second step, we estimated the mean fuel type-
specific concentration (in µg/m3) of PM2·5 pollution to 
which individuals using solid fuels for cooking were 
exposed, categorised by location, year, age, and sex 
(appendix 1 pp 10–14; for sources and estimates, see 
appendix 2 pp 4-5). This model enabled us to convert the 

proportion of the population using a given solid fuel type 
to the excess concentration of PM2·5 to which people were 
exposed (above the ambient concentration) by age and sex 
using data from real-world observations of HAP 
concentrations.14–16 Converting exposure proportions to 
fuel-type specific PM2·5 concentrations allowed us to use 
these data as direct input for PM2·5 risk curves.

Modelling of RR 
In the third step, we modelled HAP-attributable RR for 
the following outcomes: lower respiratory infection; 
stroke; ischaemic heart disease; chronic obstructive 
pulmonary disease (COPD); cancers of the trachea, 
bronchus, and lung; type 2 diabetes; cataract; low 
birthweight; and short gestation (appendix 1 pp 14–44; for 
sources, see appendix 2 p 6). Type 2 diabetes, low 
birthweight, and short gestation have been added as HAP-
attributable causes in GBD analyses since GBD 2010.17,18 
As the adverse reproductive outcomes low birthweight 
and short gestation are already risk factors, we used 
a mediation analysis to reattribute the portion of the 
burden (ie, otitis, meningitis, encephalitis, sudden infant 
death syndrome, upper respiratory infections, diarrhoeal 
diseases, neonatal disorders, and lower respiratory 
infections) attributable to low birthweight and short 
gestation to PM2·5 pollution instead (appendix 1 pp 40–44).18

For each outcome except for cataract, we calculated 
a risk curve on the basis of epidemiological data 
characterising exposure to ambient PM2·5 air pollution 
and HAP. These curves enabled us to use the output of 
our mapping model to calculate the location-specific 
relative risk for a given cause. We used the recently 
developed burden of proof risk function framework 
incorporating a meta-regression tool—meta-regression: 
Bayesian, regularised, trimmed (MR-BRT)19,20—to 
generate flexible, non-linear RR splines (exposure–
response curves), combine available RR studies while 
minimising the effects of outliers, characterise and 
correct systematic biases, account for between-study 
heterogeneity, adjust for confounders, and extrapolate 
beyond the exposure levels observed in most of the 
literature to the very high levels of pollution found in 
particular locations (appendix 1 pp 14–44). For cataract, we 
used the burden of proof risk function approach to 
calculate RR for exposed versus unexposed individuals 
(appendix 1 p 39).

The highest PM2·5 concentration attributed to HAP 
reported in the epidemiological literature to develop risk 
curves is approximately 550 µg/m³. However, because 
much higher PM2·5 concentrations have been documented 
in observational studies,14–16 we extrapolated our risk 
curves to a concentration of 1000 µg/m³.

Proportional population attributable fraction 
calculation and burden estimation
Population attributable fractions (PAFs) were estimated 
together for outcomes related to both ambient pollution 

See Online for appendix 1

See Online for appendix 2



Articles

4	 www.thelancet.com   Published online March 18, 2025   https://doi.org/10.1016/S0140-6736(24)02840-X

and HAP to account for combined exposure to both types 
of air pollution in a single location. The TMREL for 
ambient PM2·5 was defined as uniform distribution 
between 2·4 µg/m³ and 5·9 µg/m³ PM2·5 (appendix 1 p 10) 
and, therefore, assumed no incremental HAP exposure.21 
Because cataract is a consequence of HAP only, not 
ambient particulate matter, unlike other outcomes, the 
TMREL for cataract was defined as individuals not using 
solid cooking fuel. The PAF quantifies the fraction of 
burden that could be attributed to a risk factor if the risk 
factor was reduced to the TMREL. To calculate PAFs, we 
first calculated the exposure to particulate matter as the 
sum of the ambient concentration of PM2·5 and household 
or indoor concentration of PM2·5. We used the population-
weighted mean ambient PM2·5 concentration for a specific 
location and year and calculated indoor PM2·5 
concentrations as a function of the percentage of 
population exposed and the concentrations of PM2·5 to 
which they were exposed as modelled by the household 
PM2·5 mapping function for each location and year. 
Because indoor PM2·5 concentrations are consistently 
higher than those measured by personal monitors, we 
developed a ratio to scale the indoor exposure to female 
exposure. We then used female-to-male and female-to-
child ratios that we developed to estimate exposure for 
males and children, respectively (appendix 1 pp 10–14). RR 
values for the corresponding overall exposure were 

derived from the exposure–response curve (appendix 1 
pp 14–44) and used to calculate PAFs (appendix 1 pp 45–46). 
We did not assume that all HAP exposure occurred at 
high concentrations of PM2.5, which would have resulted 
in negligible changes in RR per unit change of PM2·5 
concentration for much of the domain of exposure; rather, 
we estimated the PAF for HAP on the basis of the 
proportion of the overall (HAP plus ambient air pollution) 
exposure due to HAP. This approach also avoided the 
potential for double counting of the ambient contribution 
to HAP that is estimated from the household PM2·5 
mapping function. We estimated the attributable burden 
for each cause as the product of the total burden for that 
cause and corresponding PAF for each GBD location, 
year, age group, and sex. To account for uncertainties in 
our PAF modelling, we produced 500 simulations of all 
estimates and intermediate steps (appendix 2 p 7). The 
PAF reported is the mean of these simulations, and the 
uncertainty interval was calculated as the 2·5th and 
97·5th percentile of the simulations. Finally, we conducted 
decomposition analysis11 to understand the causes of the 
observed changes in burden.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to all 

Figure 1: Percentage of global population exposed to HAP from solid cooking fuels, 2021
HAP=household air pollution.
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the data in the study and had final responsibility for the 
decision to submit for publication.

Results
Exposure to solid fuels
In 2021, 2·67 billion (95% uncertainty interval [UI] 
2·63–2·71) people were exposed to HAP from solid 
cooking fuels, 33·8% (95% UI 33·2–34·3) of the global 
population (figure 1). Although this percentage is smaller 
than the 56·7% (56·4–57·1) of the global population 
exposed to solid fuels in 1990, the total number exposed 
has declined by only 0·35 billion (11·6%) since then 
(from 3·02 billion [95% UI 3·01–3·05]). Percentages of 
populations exposed to solid cooking fuels in 2021 
remained highest in sub-Saharan Africa (78·8%, 95% UI 
77·6–80·1), south Asia (53·2%, 51·9–54·5), and 
southeast Asia, east Asia, and Oceania (29·4%, 
28·1–30·7; figure 1). In the Americas, Haiti was an 
outlier, with 91·3% (89·0–93·3) of individuals exposed to 
HAP in 2021 (figure 1).

Fuel-specific modelling showed that wood was the 
most prevalent solid fuel worldwide, with 24·0% 
(23·5–24·5) of the global population exposed in 2021 
(table). Coal was the second most prevalent fuel globally, 
with 5·4% (5·2–5·6) of the population exposed in 2021. 

Temporal trends showing the percentage of population 
exposed to each fuel type by super-region22 and year are 
shown in figure 2. Although exposure to wood remained 
widespread globally, exposure to coal was lower, being 
mainly limited to sub-Saharan Africa and southeast Asia, 
east Asia, and Oceania (geographical distributions are in 
appendix 1 p 47).

Using crop residues as cooking fuel resulted in 
exposure to the highest concentrations of PM2·5, with 
an exponentiated β value of 23·3 compared with the 
reference (ie, clean fuel), corresponding to exposure to 
concentrations of PM2·5 23·3 times higher than those 
produced by clean fuel, followed by dung (β value 10·5), 
wood (β value 7·3), and coal (β value 5·3; appendix 1 
p 12). The mean concentration of PM2·5 from HAP 
globally was 213·6 µg/m³ (median 198·0 µg/m³) in 1990 
and 84·2 µg/m³ (median 61·5 µg/m³) in 2021. The 
maximum concentration of PM2·5 from any solid cooking 
fuel to which individuals were exposed between 1990 
and 2021 was 1660 µg/m³.

RRs from HAP exposure
Figure 3 shows splines characterising the exposure–
response relationships between PM2·5 exposure and 
COPD, ischaemic heart disease, lower respiratory 

Figure 2: Percentages of population exposed to solid fuel types, globally and by super-region, 1990–2021
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infections, cancers of the trachea, bronchus, and lung, 
stroke, and type 2 diabetes. Across the full domain of 
exposure, COPD showed the highest RR from HAP 
exposure and type 2 diabetes the lowest. For cataract, 
with the burden of proof risk function approach and 
solid fuel use treated as a dichotomous risk factor 
(appendix 1 p 39), RR was 2·52 (95% CI 1·36–4·50). 
Curves for low birthweight and short gestation are in 
appendix 1 (pp 40–41).

Burden
In 2021, 111 million (95% UI 75·1–164) disability-adjusted 
life-years (DALYs), 3·9% (95% UI 2·6–5·7) of the global 
burden from all risks, and 3·11 million (95% UI 
1·90–5·19) deaths were attributable to HAP globally. 
HAP-attributable burden remained highest in sub-
Saharan Africa and south Asia, with 4044·1 
(3103·4–5219·7) and 3213·5 (2165·4–4409·4) age-
standardised DALYs per 100 000 population, respectively 
(table, figure 4). Comparing sexes, females were exposed 
to higher PM2·5 concentrations than males (appendix 1 
p 12),16 but, due to the higher burden of cardiovascular 
disease in males, HAP-attributable burden was slightly 
higher for males (appendix 1 p 48). All-cause PAFs for 
HAP have declined considerably since 1990 (appendix 1 
pp 49–51), but HAP remains an important risk factor, 
with almost 30% of cataract burden and almost 20% of 
COPD burden due to HAP in 2021. Moreover, more than 
0·5 million deaths in children younger than 5 years 
could be attributed to HAP, highlighting that almost 
11% of under-5 mortality is due to HAP.

Although the percentage of global HAP-attributable 
DALYs has declined continuously over the past 

three decades, our study found that one in 26 DALYs 
worldwide can still be attributed to HAP. Among Level 4 
risks, HAP declined from being the second most important 
risk for deaths in 1990 to being the eighth most important 
in 2021, and from being the third most important risk for 
DALYs in 1990 to being the eighth most important in 2021.11 
The Socio-demographic Index23 (SDI; a measure that 
captures income per capita, education, and fertility) is 
predictive of the proportion of a population experiencing 
burden due to HAP, but there is variation within regions 
and SDI levels (appendix 1 p 52). Notably, many locations 
in southeast Asia, east Asia, and Oceania shared a similar 
level of burden to locations in sub-Saharan Africa, despite 
having higher SDI values. Additionally, countries such as 
Somalia and Niger had low PAFs for HAP despite their 
low SDI values. In contrast, PAFs for HAP were high in 
nations such as the Solomon Islands and Vanuatu, even 
though their SDIs fall within the medium range.

In 2021, 518·1 (95% UI 410·1–641·7) age-standardised 
DALYs per 100 000, about one-third of the DALYs 
attributable to HAP, were mediated through low 
birthweight and short gestation (figure 5). These 
mediated causes included otitis, meningitis, encephalitis, 
sudden infant death syndrome, upper respiratory 
infections, diarrhoeal diseases, neonatal disorders, and 
some of the lower respiratory burden. Of the Level 3 
causes, ischaemic heart disease (18·2 million [95% UI 
10·3–31·4]), stroke (18·2 million [10·7–30·9]), and COPD 
(15·6 million [9·6–25·3]) accounted for most of the direct 
HAP-attributable DALYs, whereas neonatal disorders 
were the leading cause of mediated HAP-attributable 
DALYs (32·1 million [25·4–39·7]). Years of life lost (YLLs) 
due to premature mortality and years lived with disability 
(YLDs), which are summed to get DALYs, showed very 
different patterns. Whereas YLDs consisted almost 
entirely of direct burden, particularly COPD (2·37 million 
[1·38–3·98]), cataract (1·96 million [0·612–4·03]), and 
type 2 diabetes (1·71 million [0·711–3·44]), the 
distribution of YLLs was almost evenly split between 
direct and mediated causes, with neonatal disorders 
making up the largest proportion of burden (32·0 million 
[25·4–39·7]). Deaths attributable to HAP were heavily 
dominated by direct causes, particularly ischaemic heart 
disease (0·763 million [0·413–1·37]), stroke (0·758 
[0·433–1·31]), and COPD (0·694 million [0·412–1·18]), 
although neonatal disorders also contributed a notable 
proportion of mortality (0·356 million [0·282–0·441]).

We conducted decomposition analysis to examine the 
changes in burden attributable to HAP from 1990 to 2021 
(figure 6). This method decomposes changes to attributable 
burden into percentages due to population growth, 
population ageing, change in exposure to the risk factor, 
and risk-deleted burden (ie, all other changes in burden 
not explained by the first three categories). The result 
shows an overall decline in burden globally that reflects 
the decline in exposure for all super-regions. However, this 
decline has been counteracted by population growth in 

Figure 3: Exposure–response relationships for PM2·5 concentration and 
outcomes except for cataract
Risk curves were calculated on the basis of epidemiological data characterising 
exposure to ambient PM2·5 air pollution, and household air pollution. Shading 
indicates 95% uncertainty interval; x-axis truncated at 600 µg/m³ to provide 
more detail at lower concentrations. COPD=chronic obstructive pulmonary 
disease.
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Figure 4: Population attributable fraction of DALYs attributable to HAP (A) and age-standardised rate per 100 000 population of DALYs attributable to HAP (B), by location, 2021
DALY=disability-adjusted life-years. HAP=household air pollution. 
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almost every super-region, especially sub-Saharan Africa, 
whereas population ageing has caused a reduction of 
HAP-attributable DALYs in some super-regions.

Discussion
Our study presents timely and comprehensive estimates 
of exposure to PM2·5 pollution from HAP and of the 
HAP-attributable disease burden in 2021. The findings 
show that, first, exposure to HAP from solid fuels 
remained very high in sub-Saharan Africa and south Asia 
and, although the percentage of the global population 
exposed to HAP declined between 1990 and 2021, the 
total number of individuals exposed to HAP in 2021 
remained similar to the number estimated for 1990. 
Second, a substantial share of the burden of disease—
almost a third of DALYs—attributable to HAP was 
mediated through adverse reproductive outcomes, with 
most of this burden comprising YLLs caused by neonatal 
disorders. Third, even accounting for the mediated 
burden, overall burden from HAP is higher than 
previously estimated, and HAP remained a leading risk 
factor globally for morbidity and mortality in 2021, with 
111 million (95% UI 75·1–164) DALYs and 3·1 million 
(1·9–5·2) deaths attributable to HAP in 2021.

Estimates of HAP exposure from solid fuels in this 
study were similar to previous estimates. In 2014, 
Bonjour and colleagues,2 detailing the exposure 
estimation methods used for GBD 2010, reported that 
2·8 billion people were exposed to HAP (ie, 41% of the 
global population). Our analysis for GBD 2021 estimated 
that 3·08 billion (96% UI 3·06–3·10) people were 
exposed to HAP from solid fuels in 2010 (ie, 44·3% of the 
global population). The difference is probably the result 
of differing sources and modelling approaches. In 
GBD 2010, a single exposure indicator was used for all 
individuals exposed to HAP, regardless of year and 
location, whereas we used a spatially and temporally 

variable model that accounted for the type of fuel used. 
Additionally, Bonjour and colleagues2 used 586 country-
year datapoints from 155 countries, whereas we used 
1173 country-year sources from 161 countries (appendix 1 
pp 5–7, appendix 2 p 1). A more recent study by Stoner 
and colleagues7 used a multivariate hierarchical approach 
to estimate the proportion of individuals exposed to 
polluting fuels from 1990 to 2030; these estimates 
comprise those reported and used by WHO1 for their 
estimates of disease burden.24 Stoner and colleagues’ 
model used six fuel types: kerosene, wood, crop waste, 

Figure 5: Composition of global, HAP-attributable Level 3 DALYs (A), deaths (B), YLLs (C), and YLDs (D) by disease, 2021
Non-communicable diseases are in blue; communicable, maternal, neonatal, and nutritional diseases are in red. COPD=chronic obstructive pulmonary disease. 
DALYs=disability-adjusted life-years. HAP=household air pollution. YLD=years lived with disability. YLL=years of life lost. 
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Figure 6: Decomposition of all-cause HAP-attributable DALYs into percent change driven by population 
growth, population ageing, exposure, or risk-deleted DALY rate, globally and by super-region, 1990–2021
DALYs=disability-adjusted life-years. HAP=household air pollution. 

Sub-Saharan Africa

South Asia

North Africa and Middle East

Latin America and Caribbean

Southeast Asia, east Asia,
and Oceania

Central Europe, eastern Europe,
and central Asia

High-income countries

Global

–150 –100 –50 0 50 100 150
Change in DALYs from 1990 to 2021 (%)

Change due to population ageing
Change due to population growth
Net percentage change

Change due to risk exposure
Change due to risk-deleted DALY rate



Articles

10	 www.thelancet.com   Published online March 18, 2025   https://doi.org/10.1016/S0140-6736(24)02840-X

dung (squeezed to biomass), charcoal, and coal.7 As in 
our study, their model constrained the proportions of 
fuel types present so that the total never exceeded 100%. 
Stoner and colleagues used data already tabulated in the 
WHO Household Energy Database, whereas we extracted 
the microdata ourselves when possible and used 
tabulated estimates from the WHO Household Energy 
Database only when microdata were not available. This 
approach allowed us to ensure consistency in mapping 
survey responses to fuel categories and to extract 
household size, which we used to adjust results reported 
at the household level to a population estimate. Stoner 
and colleagues’ estimate of the number of people exposed 
to polluting fuels in 2010 (3·0 billion [95% UI 2·7–3·3]) 
was very similar to our own, but their estimate for 
2020 (2·8 billion [2·3–3·3] people exposed, 36% [95% UI 
30–43] of the global population) was higher than our 
estimate for the same year (2·71 billion [95% UI 
2·68–2·75] people exposed, 34·7% [95% UI 34·3–35·2] 
of the global population). This variation is probably due 
to modelling differences and the fact that we adjusted for 
household size. Nonetheless, our estimates for 2020 
were within the uncertainty reported by Stoner and 
colleagues, and our estimates would probably have 
increased if we had included kerosene in our model.

Our study found a consistently higher HAP-attributable 
burden than previously estimated. In the finalised results 
for GBD 2010, we reported 108 million (95% UI 84·9–133) 
DALYs attributable to HAP in 2010,25 whereas, here, we 
estimated 161 million (115–211) DALYs for the same 
year. Our estimate of deaths attributable to HAP 
in 2010 (4·23 million [2·94–5·77]) in this study is also 
higher than the number estimated in GBD 2010 
(3·48 million [2·64–4·39]).25 These differences can 
probably be explained by our updated methodology, 
which included differing estimation methods for PM2·5 
concentrations and risk. Since 2010, we have added 
cataract and type 2 diabetes,17 and, most notably, we have 
attributed a portion of the burden from causes mediated 
via adverse reproductive outcomes to HAP,18 which has 
led to a substantial increase in our overall estimated 
burden. In addition, many of the epidemiological studies 
used in GBD 2010, especially for non-communicable 
diseases, were conducted in low-pollution settings and, 
thus, underestimated risk when informing burden for 
individuals exposed to high concentrations of pollution. 
Finally, we estimated both proportion of population 
exposed to HAP and PM2·5 concentrations from solid 
fuels on the basis of the specific type of fuel used. Our 
analysis showed that the burning of crop residue 
produces higher quantities of particulate matter than 
does burning of dung, wood, or coal (listed in descending 
order of the quantities of emissions produced).

A study of HAP-attributable burden by Lee and 
colleagues8 used a random effects model to produce 
pooled estimates of RR for cardiorespiratory, maternal, 
and paediatric outcomes. Lee and colleagues estimated 

that HAP contributed to 1·8 million (95% CI 1·1–2·7) 
deaths and 60·9 million (34·6–93·3) DALYs in 2017, 
whereas, here, we estimated 3·25 million (95% UI 
2·01–5·14) deaths and 123 million (82·1–176) DALYs 
attributable to HAP in the same year. Our study estimated 
the actual concentrations of PM2·5 to which individuals 
were exposed and assigned excess risk, whereas Lee and 
colleagues used a binary exposure model (ie, exposed vs 
unexposed individuals) to estimate RR. The binary 
exposure model included kerosene and NO2 from 
cooking fuels, whereas our risk definition included PM2·5 
pollution from solid fuels only. As our study reflects 
geographical, temporal, and fuel-type variations, we 
believe that our estimates reflect exposure more 
accurately. Lee and colleagues used the exposure 
estimates reported by Bonjour and colleagues;2 thus, 
most of the additional burden in our analysis was 
probably driven by our higher estimates of exposure 
compared with the GBD 2010 study. Other differences 
were that, unlike Lee and colleagues, we included type 2 
diabetes and causes mediated via adverse reproductive 
outcomes (which, together, constitute almost half of the 
estimated DALYs) and we did not model pulmonary 
tuberculosis or asthma. The inclusion of asthma 
symptoms and exacerbations is inconsistent with current 
risk factor analysis for air pollution in GBD, which 
focuses on incident disease, given the challenges in 
estimating short-term (ie, daily) variation in global 
exposure. Future iterations of the GBD study might 
include tuberculosis if forthcoming burden of proof 
analyses meet GBD inclusion criteria.19 Finally, we 
derived our RR estimates from longitudinal and case–
control studies and excluded cross-sectional data 
(appendix 1 p 39), whereas Lee and colleagues used 
cross-sectional data in their estimation.

By modelling fuel-specific exposure to HAP and then 
mapping location-specific and year-specific exposure to 
real-world measurements of PM2·5 by age and sex, our 
exposure estimation overcomes some of the limitations 
of previous analyses. Although our previous estimates 
relied on an integrated exposure–response curve,10 our 
latest estimates used RR curves produced with the 
burden of proof risk function approach,19 allowing us to 
adjust the RR input data for confounding covariates and 
interstudy heterogeneity. The availability of additional 
epidemiological studies specifically linking ambient 
pollution and HAP to morbidity and mortality also 
allowed us to discontinue the inclusion of active and 
passive smoking data in our RR estimates. The inclusion 
of HAP-specific studies, particularly those for cardio
vascular disease, stroke, and type 2 diabetes, is a major 
improvement over our 2010 estimates. The decomposition 
analysis revealed that population growth has partly 
counteracted the effect of reduced exposure to HAP in 
almost every super-region and at the global level.

As is the case with other estimates of global risk 
burden, our estimates have several limitations. First, our 
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risk definition—exposure to PM2·5 pollution from solid 
fuels—did not allow us to capture other sources of HAP 
that have established epidemiological effects, 
such as kerosene,26,27 or co-pollutants, such as carbon 
monoxide.14,28 WHO estimated that in 2021, 63·1 million 
(95% UI 37·8–120·4) people cooked primarily with 
kerosene.29 Pollution produced by heating and lighting 
fuels in the home was absent from our analysis, which 
probably resulted in overestimation of the specific effect 
of pollution from cooking fuels. We also encountered 
several challenges concerning the input data for our 
exposure models. As we extracted only data representing 
the primary fuel used in a home, and data on secondary 
fuel sources are sparse, we were unable to model usage 
of multiple fuel types (known as stove stacking), which 
remains highly prevalent among communities using 
solid fuels.30,31 Exposure data were also very sparse for 
high-income countries, eastern Europe, and Oceania; 
thus, estimates for these locations relied heavily on data 
imputation through spatiotemporal Gaussian process 
regression inference and might have underestimated 
solid fuel usage for communities who remain without 
access to cleaner fuels in these locations. Our estimates 
did not include the effects of improved stoves, although 
the efficacy of such interventions seems low.32–35 Similarly, 
we were unable to capture the effects of various grades of 
fuel within a category; instead, we assumed equitoxicity 
within each fuel type. Furthermore, the uncertainty of 
our RR model could not account for measurement bias, 
selection bias, or model mis-specification bias. Another 
important limitation is the fact that we did not adjust for 
confounding bias because our PAF estimation method 
assumed no unmeasured confounding. The wide UIs for 
our RR curves, particularly at high PM2.5 concentrations, 
indicate the need for more high-quality studies. 
Dementia and tuberculosis were not included in our 
estimations, but these outcomes might be evaluated for 
inclusion in future GBD cycles.36,37 Further discussion of 
the limitations of this study can be found in appendix 1 
(pp 7, 10, 15). In summary, these omissions probably led 
to further underestimation of exposure, and, thus, 
burden in this study.

Our study confirms that, although progress has been 
made in reducing exposure to and burden attributable 
to HAP, the rapid transition of under-resourced 
communities to cleaner fuel sources is urgently needed, 
given the magnitude of current attributable disease 
burden. Reductions in exposure have been geographically 
variable, with the smallest declines in sub-Saharan Africa 
and south Asia. Previous studies have focused on 
household-level interventions, such as improved stoves, 
but the limited success of these programmes indicates 
the need for investments in community-level 
infrastructure. For example, the recent Household Air 
Pollution Intervention Network (HAPIN) trial38—the 
largest randomised controlled trial to study the switching 
of cooking fuels from biomass to liquefied petroleum 

gas—indicated reductions in exposure to PM2·5, but the 
intervention did not lead to reduced incidence of 
childhood pneumonia or to increased birthweight.39,40 
Importantly, in the intervention group, the median PM2·5 
concentration was 24·2 µg/m³,39 a concentration for 
which our analysis still indicated substantially increased 
risk of low birthweight (appendix 1 pp 40–44), a possible 
limitation acknowledged by the authors of the HAPIN 
trial.38 Like the HAPIN trial, the Ghana Randomized Air 
Pollution and Health Study (GRAPHS) found that 
switching to liqueified petroleum gas produced no 
improvement in birthweight or the incidence of severe 
pneumonia.35 The median PM2·5 concentration to which 
the intervention group in GRAPHS was exposed was 
45 µg/m³, probably due to pollution from neighbours’ 
cooking. A systematic review by Puzzolo and colleagues41 
of respiratory outcomes, low birthweight, and short 
gestation found benefits to cooking with gas rather than 
solid fuels but also found that the use of gas instead of 
electric stoves increased the risk of pneumonia and 
COPD. Unlike our study, the meta-analysis by Puzzolo 
and colleagues included studies on heating fuel usage 
and cross-sectional studies; they note that cross-sectional 
studies provide a lower level of evidence but point to the 
paucity of randomised controlled trials available for 
inclusion. Due to the timing of the search, Puzzolo and 
colleagues did not include the HAPIN findings in their 
systematic review, but they acknowledge the study on 
birthweight40 and reiterate a limitation reported by the 
HAPIN authors—ie, the fuel switch was not initiated 
until the second trimester of pregnancy, possibly limiting 
the efficacy of the intervention.39,40 These contrasting 
findings highlight the complexity of the healthy 
household energy challenge and make clear that further, 
high-quality studies are needed, particularly studies that 
focus on community-level intervention.

The high level of paediatric burden estimated in this 
study is a major cause for concern. Apart from the 
approximately 66 million DALYs of HAP-attributable 
burden mediated via adverse reproductive outcomes 
in 2021, paediatric exposure to PM2·5 has lifelong 
implications, including developmental disorders, IQ loss, 
and increased risk of chronic illness in adulthood.42 
Paediatric HAP exposure also impairs educational 
attainment and lifetime economic potential, compounding 
the disadvantages already faced by children from low-
income backgrounds.43 Although several measurement 
studies have indicated that females are exposed to higher 
concentrations of particulate matter from HAP than are 
males (appendix 1 pp 11–13), these differences are less 
pronounced than often believed. For our study, we calculated 
adjustment ratios on the basis of measurements in several 
studies, including those in the PURE-AIR study, which 
measured exposure to household and personal air pollution 
within 120 communities in eight countries.16 The ratios we 
estimated were 0·64 (95% CI 0·52–0·79) for males and 
0·85 (0·67–1·09) for children. The difference observed in 
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the PURE-AIR study was even less pronounced, with mean 
PM2·5 concentrations of 67 μg/m³ (95% CI 62–72) for 
females and 62 μg/m³ (58–67) for males. The overall HAP-
attributable burden was higher for males than for females; 
this finding is the consequence of an overall higher disease 
burden in males than in females, especially for 
cardiometabolic disease. Policy makers should note that 
although cooking is often done by women,5 leading to 
increased exposure to HAP, all members of exposed 
households are harmed by HAP. HAP also makes a large 
contribution to ambient air pollution,44,45 and the 
elimination of HAP could help affected countries to meet 
their goals for ambient air quality.46,47 For example, in India, 
32% of the overall contribution of residential combustion 
to mortality was mediated via its effect on exposure to 
ambient PM2·5.48 In addition, the inefficient combustion of 
solid cooking fuels releases black carbon and CO2,16 climate 
forcing agents that contribute to anthropogenic climate 
change.49 Floess and colleagues50 have shown that 
transitioning users of solid fuels to cleaner energy sources 
also has large co-benefits for reduction of greenhouse gas 
emissions. Thus, the positive effects of equitable and 
culturally sensitive programmes in transitioning 
communities from solid cooking fuels to cleaner fuels are 
numerous. Renewed international investment to provide 
under-resourced communities, particularly those in sub-
Saharan Africa and south Asia, with cleaner fuels must be 
renewed and accelerated.

In conclusion, HAP remains a leading risk factor in 
many low-income and middle-income countries, exerting 
adverse effects on a variety of health outcomes, including 
cardiorespiratory and metabolic diseases, as well as on 
reproductive health outcomes. Our study underscores the 
serious health consequences linked to adverse 
reproductive health outcomes; these can be both fatal and 
long lasting and have not received adequate attention 
from researchers and policy makers. We hope our work 
further illuminates the fact that the HAP-derived burden 
remains a major problem for many low-income and 
middle-income countries. Despite steady improvements 
made over recent years, we argue that HAP mitigation 
needs to remain high up the global policy agenda and 
requires a multifaceted approach. Prioritising research 
and development for cleaner technologies, subsidising 
affordable clean energy appliances, and enforcing 
stringent emissions standards are crucial policy 
measures. Equally important are public awareness 
campaigns that educate people about the associated 
health risks of HAP, alongside enhanced monitoring 
systems that supply the data needed for evidence-based 
decision making. By incentivising private sector 
investment and ensuring cross-sector policy integration, 
we can establish comprehensive and effective strategies 
to substantially reduce HAP and its detrimental effects.1,51
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